
Experiments and Modeling of Microphysical Properties

Leader: Merete Bilde Serena Chung Juliane Fry Chris Hoyle Hannele Korhonen Radovan Krejci Thomas Rosennoern Alessandro Zardini

What models need

Physical Properties

- Interaction with water vapor
- hygroscopicity
- wettability
- solubility
- Interaction with radiation
- Absorption and scattering cross sections and their wavelength dependence
- $_{\top}$ Vapor pressure dependence on ambient conditions (T, RH)
- \rightarrow gas to particle partitioning
- \rightarrow nucleation
- \rightarrow degree of internal mixing

Modeling

- What we think we know or can do
 - There are a lot of organic aerosols
 - We know how to solve equations numerically given the right input parameters
 - chemical reactions
 - partitioning of condensible material and condensational growth
 - coagulation
 - nucleation
 - Given the equation/parameterization, we can do sensitivity studies

Modeling

- What we don't know or don't have
 - lumping of species (by volatility or other properties)--can we "add up" properties of pure components to represent complicated mixtures of compounds?
 - Good emissions inventories. What can cause emissions to change and how much?
 - Evolution of aerosol properties that affect aerosol removal.
 - Nucleation

Experiments

- What we know or what we can do:
 - techniques for measuring hygroscopicity:
 - supersaturated and subsaturated conditions We still need both kind of measurements (?)
 - techniques for measuring vapor pressure:
 We have several of them producing different results and solid/saturated liquid don't match ↑
 - techniques for measuring kinetic uptake coefficients
 - entrained aerosol flow-tube experiments
 - many reaction mechanisms and rates

Experiments

What we don't know

- What compounds matter ? To which extent they matter?
- If properties are additive in mixtures
- mixing state of aerosols: the degree of internal mixing will influence the DRH and ERH.
- How the fuctional groups are distributed in the aerosol particle.
- unknown reaction mechanisms and sources of aerosols

Field Measurements

Priorities for measurements of microphysical parameters (and which compounds):

- Emissions of semivolatiles and SOA precursors currently unidentified
- Total VOC---carbon balance (gas and aerosol phase)
- ???????

Given the huge number of different aerosol components in OA, does it make sense to investigate single components

?

The answer is NO

• Because experimentalists must give information on actual ambient aerosol

The answer is YES

 Because the speciation is far from being resolved, there's the need to investigate properties based on pure compounds and mixtures of a few compounds.

ACTION ITEMS

- "Outdoor" chamber experiments
 - bringing in ambient air and incrementally add oxidants and VOC
 - measure change in ecosystem
 - e.g., take over the BIOSPHERE experiment
- Experiments with gradually increased complexity, e.g. gradually add more VOCs.
 - measure hygroscopicity, CCN properties of mixtures of organic compounds
 - carbon balance